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Abstract. Empirical tight binding has proven to be very popular in recent years on account of
its computational efficiency and accuracy. However, it has limitations, notably the difficulties
associated with fitting parameters and improving models when the desired accuracy cannot be
achieved. In the light of this, a number of efforts have been made to derive tight-binding models
from first principles. Here are described a number of formalisms based on density functional theory
which span the range of approaches currently being used.

1. Introduction

Mathematical models are central to the interpretation of physical phenomena. The great
advantage of computer models is that they can be made very sophisticated, and so describe
rather accurately the phenomena we wish to understand. Indeed, the best quantum chemical
calculations rival experiment in the accuracy they can achieve. Computer simulations can be
carried out over the complete span of length scales from the cosmological to the sub-atomic.
Here we focus on the atomic length scale.

For the overwhelming majority of problems of interest which are best described at the
atomic level, achieving the most accurate account of some phenomenon requires that a balance
must be struck between two competing requirements: alarge enough number of non-equivalent
atoms must be considered to remove effects due either to periodic boundaries or cluster surfaces;
the model used to describe the interactions between atoms must be precise enough to include
all the relevant features. The nature of the final compromise depends very sensitively on
the problem being studied, and so there can be no universal method. In this review we will
concentrate on those problems where a few hundred atoms are sufficient to describe the process
being simulated, but where an explicit account of the electrons is needed to describe the
interatomic interactions. It should be pointed out though that the rapid improvement in both
algorithms and performance of hardware are shifting ever higher the maximum number of
atoms that can be treated with the methods described below.

2. The role of quantum mechanical simulations

In the following, a basic understanding of total-energy quantum mechanical methods is
assumed. An introduction to methods appropriate to solids can be found in Ashcroft and
Mermin [1].

All interatomic interactions involve the motion of electrons. For some systems this can
be accounted for in a very simple way leading to simple models. Notable examples based on
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perturbation theory include: noble gases where the electrons are perturbed only slightly about
a very stable atomic ground state leading to dispersion forces accurately described by a pair
potential; nearly free-electron metals where most of the total energy can be described by a
uniform electron gas in the potential of pseudo-ions with the small residual interactions being
well described by a pair potential derived from second-order perturbation theory.

There are many other systems where simple perturbation theory is inadequate. A general
class of such systems is where strong covalent bonds are made and broken letatiyg to
redistributions of electron density. This redistribution leads to complicated non-local changes
in interatomic interactions which are most easily described by treating the electrons explicitly.
One example system is the carbon vacancy in titanium carbide [2]. The removal of the carbon
atom results in charge being distributed preferentially into some bonds over others. The
resultant atomic relaxation can only be understood using a many-centre analysis.

To describe electronic motion we must use quantum mechanics. Since exact solutions can
only be found for a very limited range of problems approximations must be made. Almost
all the effort in practice goes into constructing suitable numerical approximations. Which
approximation is chosen depends strongly on the problem being solved. There are two basic
decisions that always need to be made: the choice of theory (either the many-bailyi g
equation or density functional theory); the choice of basis set in terms of which to expand the
wavefunctions.Ab initio tight binding makes use of the Kohn and Sham [3] formulation of
density functional theory. This is chosen on account of the accuracy that has been achieved
consistently with rather simple approximations (notably the local density approximation).
Possible choices of basis set are described below.

3. Empirical tight binding

In order to understand the interestdb initio tight binding it is necessary to go back to its
precursor, empirical tight binding [4—7]. This is the simplgsantitativequantum mechanical
model. Its simplicity allows analytic results to be produced for a number of systems; thus it
has been used extensively in the past to provide qualitative understanding of a wide range
of electronic phenomena. Recently it has been rediscovered as a quantitative total-energy
method, often being combined with molecular dynamics. The main reasons for this are: it is
a quantum mechanical model and thus allows for a proper description of electronic motion;
it is very simple and thus can be implemented very efficiently; it is a real-space method and
thus can be used with linear scaling algorithms; it is a parametrized model and thus can give
remarkably high accuracy for some systems.

But it also has major limitations: fitting the parameters is often a very lengthy business;
constructing models for systems with more than one type of atom is usually much more
difficult than creating models for a single atom type; when the model breaks down it is very
hard to decide how to improve the model. A number of attempts have been made to produce
more accurate models [8-17], and the success of Hartree—Fock-based empirical methods such
as CNDO [18-22] suggests that for some systems improved empirical methods have value.
However, the fundamental weaknesses remain.

4. Ab initio tight binding

The strengths of empirical tight binding are so clear that they provide a strong motivation to
overcome its limitations. Since the limitations are related to fitting parameters and extending
the model, the natural way to proceed is to derive a tight-binding model from first principles.
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The decisions made during the derivation will define the limitations of the model. If greater
accuracy or speed are required, different decisions can be made. In afirst-principles description
every term has a clear definition; thus evaluating terms for mixed systems should be no harder
than for single-element systems.

Empirical tight binding is efficient for several reasons: the basis set is minimal, thus
minimizing the time spent on diagonalizing the Hamiltonian matrix; the integrals are all given
by formulae that are rapid to evaluate; the range of interaction between atoms is short (the
orbitals are localized in space), thus allowing the construction of the Hamiltonian to be carried
out in a time that scales linearly with the number of atoms. We would like to retain these
properties in any first-principles formalism. There is no problem in principle with constructing
alocalized minimal basis set. However, in general the integrals will not be able to be represented
by simple functions, but they can be evaluated once, and stored in tables that can be interpolated
later on.

We now take a brief look at the fundamental theory underlybgnitio tight binding,
and then look at a number of practical implementations. A comparison of the methods, using
the isolated vacancy in silicon as an example, is given at the end of the review. However, it
is important to note that the method which is most appropriate will depend strongly on the
application. Thus cited applications of the methods should be referred to in order to determine
which is the best for a given problem.

4.1. The Harris—Foulkes functional

A fundamental decision underpinning evety initio tight-binding model is to make it non-
self-consistent (though this constraint can be relaxed, as discussed below). The Harris—Foulkes
functional [23-25] Uy ) is very similar to the Kohn—Sham functional, except thatit is defined
entirely in terms of aimputcharge densityx(;,,) (whereas the Kohn—Sham functional is defined

in terms of both an input and an output charge density):

1 - - nin(;)nin(;,) 1 ZIZJ
U in] = e — < | dFdr ———+ ——
HF[in] Xi:fs 2/ F dr F—7 224 |R, — Ry
+ Exc[nin] - f dr vxc[nin; 7]nin (7) (l)

whereg; is an eigenvalue of the effective Hamiltonian= 7 + 3", v; + v, + vya, fi is the
corresponding single-particle state occupar#tyis the charge on ioi, R, is the position
of ion I, E,. is the exchange and correlation functional,[n;,; 7] = §E c[nin]/8ni, (), T
is the electron kinetic energy operatoy, is the interaction potential for an electron and ion
I, andvy,(F) = [ dF' n;,(¥")/IF — 7'|. The set of terms following the sum of eigenvalues is
called the double-counting term. It corrects for the fact that part of the potential the electrons
move in is generated by the electrons themselves. The eigenvalues are found by solving the
equation

hr; = e (2)
wherey; is a single-particle wavefunction.

Given the original motivation for considering the electrons explicitly, namely that there
are often cases where large charge transfers occur when bonds are made or broken, we need
to justify the use of a non-self-consistent scheme in which we work with a fixed input charge
density. The justification is that the error in the total energy is second order in the difference

between the input charge density and the self-consistent charge density [26]. Provided the first-
order terms dominate over all others, this is a good approximation. However, the electrostatic
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terms are second order in the density, so if there is significant charge transfer leading to long-
ranged internal fields, errors may occur.

This functional has been tested on a wide range of systems, and has been found to
be surprisingly accurate. In particular, Polatoglou and Methfessel [27] looked at the bulk
properties of Be, Al, V, Fe, Si, and NaCl. They found that the bulk modulus and lattice
constant were well described in each case (even in ionic NaCl), though the energy was less
well converged. Finnis [26] found thatitis important that the input charge density be contracted
relative to the free-atomic charge density. Using the contracted density he was able to obtain
well converged results even for the surface and vacancy in aluminium.

One notable set of systems where it fails is transition metals [28]. The problem here is
that the electronic configuration in the atom is quite different from that in the solid, even in
the neighbourhood of the core. One cycle of self-consistency greatly improves the results.

Having discussed the general underlying theory, we now look at some specific
implementations.

4.2. Atomic-like orbital-based tight binding

A small number of atomic orbitals are capable of giving good convergence. There are two
factors responsible for this. The firstis that, by construction, the orbitals have the correct form
near the ion cores. The second is more general. The correct wavefunctions will minimize
the energy of the system. Thus we can make a linear combination of atomic orbitals, and
adjust the coefficients so as to minimize the energy. This gives us a best-fit approximation
with the property that any errors in the final energy will vary as the square of the error in the
wavefunctions. Thus the energy is rather insensitive to errors in the wavefunction.

There are three formalisms that will be discussed here that begin by expanding the
wavefunctions in terms of atomic orbitalg,, wherew is an orbital index covering principal
and angular quantum numbers. We begin by describing the formalism of Sankey and Niklewski
[29], followed by the variant due to Horsfield [30], and finally the two-centre formalism of
Frauenheim [31].

4.2.1. Formalism of Sankey and Niklewsk{Conceptually this method is straightforward. It
is a non-self-consistent linear combination of atomic orbitals (LCAO) method in which the
integrals are evaluated prior to a simulation, and then obtained from tables by interpolation
during a simulation. There are, however, a number of important technical points that make the
method viable, and hence interesting. A

If we expand the wavefunctions gs = 3, C\V¢,,, and define

Ria,1p = / dF prahepss
Olo,yp = /d7 DraPip

then equation (2) can be transformed into the following matrix equation:

Z hla,JﬁC% =& Z OM,J,SC%. 4
JB JB

The method then consists of a choice of input charge density, basis set and ways to evaluate
and tabulate the integrals given in equation (3) (the Hamiltonian and overlap matrices) and
equation (1) (the double-counting terms).

The orbitals are taken to be atomic-like, and the input charge density is taken as a sum of
atomic-like charge densitiedVf,, (F) = ), n,(r), wheren; is the atomic-like charge centred

®3)
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on sitel). We have already seen from the work of Finnis [26] that it is important to compress
the charge density relative to the free atom. There are also two problems associated with taking
the orbitals from the free atom. In the first place it makes calculations slow since the orbitals
are long ranged and many neighbours must be considered when constructing the Hamiltonian
and overlap matrices. The second problem is that, according to the virial theorem for particles
that interact with potentialsi{) that vary with distance as/t, the electronic kinetic energy

(T) should increase as atoms bond to form a condensed sySiE)m:(—%(V)). Both these
problems can be overcome very elegantly by taking the orbitals (and also the charge density)
from a confined atom. This puts the atom into a slightly excited state. In the method of Sankey
and Niklewski the atom is confined by forcing the orbitals (but not their derivatives) to go to
zero at some radius (5 Bohr radii for silicon). This is equivalent to confining the atoms in an
infinitely deep spherical square well potential (see figure 1).

s orbital p orbital
0.15 — —_—
N
A
0.10 i
>
0.05 i
\
A\
N\
\
0.00 ————— =
0 2 4 6
r (Bohr radii) r (Bohr radii)

Figure 1. A comparison of two sets of orbitals for a minimal basis set for silicon. The full lines
correspond to the orbitals used by Sankey and Niklewski, and the broken line to those used by
Horsfield. The qualities of the basis sets are essentially the same. However, the basis set of Sankey
and Niklewski has a discontinuity in its first derivative at the cut-off radius.

The overlap integrals@;q, ;s = [ dF ¢;a¢sp) and kinetic energy integralsy, ;s =
[dF qb,afq’;,ﬂ) clearly consist of one-centrd (= J) and two-centre { # J) terms.
The electrostatic part of the double counting%(Z,,fd? dr" nyFn; F)/IF =7 +
1 Z:Z;/|R; — R;|) also consists of one- and two-centre terms.

The Hartree potential and the local part of the atomic pseudopotential can be combined
to form a short-ranged neutral-atom potential

LRGEDY ivﬁ) + / dr’ f’ﬁ} =D " @. 5)

i r—rl| i
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A typical matrix element involving this potential is
/ A pra YWY Py (F) =Y f O pra(FYog ™ (F)pp (7). (6)
K

If I = J = K we have a one-centre integral.ll&4 J, butK = I or K = J, then we have a
two-centre integral. Otherwise we have a three-centre integral.

The one-centre integrals can be evaluated once and stored. The two-centre integrals can
be tabulated as a function of separation on a one-dimensional grid, with rotations being taken
into account by means of Slater—Koster [32] tables. The three-centre integrals are tabulated
as a function of three variables (see figure 2): the bond lengtlile distance between the
bond centre and the site on which the potential apperafid an angled). The tables are
created for a specific geometry, and the integrals for other geometries are obtained by means
of rotations. The integrals are three dimensional, and are performed in reciprocal space as this
allows two out of the three integrals to be performed analytically, leaving a one-dimensional
integral to be performed numerically.

a) b)

Figure 2. The geometry used to define variables in terms of which the three-centre tables are
constructed. Panel (a) is for the method of Sankey and Niklewski, and panel (b) is for the method
of Horsfield.

The electrostatic integrals are easy to tabulate because the total potential can be expressed
as a linear combination of spherical single-site quantities. However, the integrals involving the
exchange and correlation potential and energy are more difficult to handle because the functions
involved have a strongly sub-linear dependence on density (rougfly. In the Sankey—
Niklewski method this functional dependence is exploited by approximating the density in some
region by an optimized constant value, for which the integrals are easy to evaluate. Consider
the integral of the exchange and correlation potential in the local density approximation

fd; ¢1a(7)vxc(nm(;))¢J/3 (7)

Q

/d7 P1a(F)vxc(W)pyp (F) + / dF ¢1o (F)vy () (nin (F) — W) $yp(F) + - -

= ch(l’_l)ola,hg + U;C(ﬁ)(nla,‘/ﬂ — ﬁOla,Jﬂ) + ... (7)

wherenq ;5 = [ dF ¢1o(F)nin(F)¢ 5(F). The optimum constant value for the density is
chosen so as to make the second term zere (14, s8/ O1a,78). Care has to be taken when
the overlap goes to zero. Dipole and quadrupole fluctuation corrections are included.
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The method has been applied to such systems as amorphous silicon [33-39], silicon
clusters [40], silicon surfaces [41, 42], various carbon structures [43-51], a number of
multicomponent problems such as GeSe [52] and Si—C alloys [53], as well as many others
[54-70].

4.2.2. Formalism of Horsfield. The formalism of Horsfield [30] is rather similar to that of
Sankey and Niklewski. The important differences are the choice of basis set, and the way in
which the exchange and correlation integrals are handled.

A minimal basis set was found to be inadequate for an accurate description of fluoro-
carbons, but a double-numeric basis set gave good agreement with accurate density functional
calculations. The orbitals were taken from the neutral atom and a positively charged ion [71].
As with the formalism of Sankey and Niklewski the atomic calculations were performed in a
confining potential. The potential had the forh The square-well potential was not used
because it produces adiscontinuity in the first derivative of the wavefunction at the cut-off radius
(see figure 1). The integrals were all performed in real space using partition functions [71].

The perspective taken when evaluating the exchange and correlation integrals is rather
different from that of Sankey and Niklewski. The key point is no longer the sub-linear
dependence of the functionals on density, but rather the localized character of the confined
atomic charge densities. For the exchange and correlation potential integrals, this localization
allows us to write a many-centre expansion of the form

/d? ¢1a(7)vxc[nin; ?]¢Jﬁ(?)
~ /d7 1o (F)vxe[ng +ny; Fldp(F)

+ Z /d7¢1a(7){vxc[n1 +ny+ng;r] = velng +ng Fligp(r) -
K(#1.J)
(8)

As for the electrostatic terms we have one-, two-, and three-centre (and higher) terms. These
are added to the electrostatic and kinetic energy terms to create a single set of tables (see
figure 2 for the geometry used for the three-centre integrals). It was found to be necessary
to carry out an additional numerical integral for the on-site exchange and correlation term
since the few-centre approximation is not accurate enough in this case. However, the integral
requires only a few points, and so is fast to evaluate. This method gives very good agreement
with accurate self-consistent calculations for molecules [30].

4.2.3. Formalism of Frauenheim.It could be argued that this is not strictly a first-principles
method in that it requires the fitting of a pair potential, but it does make use of tabulated
integrals for the hopping integrals and overlap matrix, and has been used very successfully;
thus it is considered here. The form used for the total energy is

UFrauenheim = Xi:fi‘gi +%;¢1J(|Rl _R]D (9)
whereg,;; is a short-ranged repulsive pair potential. This form can be justified in terms of
screening arguments [72].

As for the previous two formalisms the orbitals are obtained from atomic calculations
with the atoms being confined by a localizing potential, the form used b&ifit8]. Once
the orbitals are chosen, the overlap and Hamiltonian matrices can be generated. This method
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eliminates two terms from the Hamiltonian matrix that are present in the previous formalisms,
namely the crystal-field terms and the three-centre integrals [31]. This can again be justified in
terms of pseudopotential and screening arguments [74]. The potential used to evaluate the two-
centre hopping integrals is the sum of the two spherical atomic potentials. The on-site terms
in the Hamiltonian are taken from the free atom (not confined). Using this Hamiltonian and
overlap matrix the band-structure energy can be evaluated. The pair potential is generated by
subtracting the band energy from first-principles total-energy calculations for certain selected
structures. The absence of three-centre terms makes this method faster and more economical
with its use of memory as compared with the previous two methods.

This formalism has been applied widely. Materials that have been studied using this
formalism include carbon [31], silicon [75], boron nitride [76], germanium [77], gallium
arsenide [78], SN,, clusters [79], and gallium nitride [80].

4.3. Muffin-tin orbital-based tight binding

As stated above, we wish to make our basis set localized in real space and as small as possible.
Making use of orbitals obtained from calculations of an atom in a confining potential is one way
of approaching this problem. Alead hocapproach is to construct the basis set from solutions

to an exactly solvable problem that is as close as possible to the one we are interested in. The
muffin-tin potential [81] provides a popular and successful solvable problem for close-packed
systems. The potential for a solid is approximated by a series of non-overlapping atomic-
like spherical potentials, and a constant potential between the spheres (a two-dimensional
representation of the regions looks rather like a muffin tin). &dimger’s equation can be
solved exactly in both regions. These solutions are matched at the boundaries of the spheres
to produce muffin-tin orbitals (MTOs). One can further reduce the effect of the interstitial
regions by working with space-filling, overlapping atomic spheres instead of MT spheres (so-
called atomic spheres approximation, ASA). Unfortunately these MTOs are very long ranged.
However, a unitary transformation can be applied to these long-ranged orbitals to render them
short ranged, and hence suitable for tight binding [82]. The formalism is somewhat intricate,
so the relevant theory has been reproduced in the appendix.

4.3.1. Nearly orthogonal tight-binding LMTOsIn the linear MTO method, MTOs are used

to construct a basis set which is (i) energy independent, (ii) exact to linear order in energy, and
(i) rapidly convergent. The latter means that for the valence electrons it is generally sufficient
to retain one orbital per site per orbital quantum nunibésilm), wherel andm are the orbital

and azimuthal quantum numbers respectively. Typically nine standard LMI®9ér site
(corresponding to an spd basis set) produce sufficient accuracy for most transition metals [83].
This is a minimal basis set, which is what we would like for tight binding.

The LMTOs represent a variational basis constructed from the solutions of thi8uer
equation within the muffin-tin spheres(e,, r), wheree, is selected within the region of
energies occupied by the valence electrons. If we consider an arbitrary endtwmn the
LMTOs have an error of ordee — €,)? within the muffin-tin (MT) spheres and of order
(e —€,)t in the interstitial region (not belonging to any of the muffin-tin spheres). To improve
the accuracy of the method one usually seleeeslappingMT spheres whose volume is equal
to the volume of the respective Wigner—Seitz spheres and neglects completely the contribution
of the interstitial regions (so-called atomic sphere approximation, ASA, or LMTO-ASA).

The MTOs are long ranged with tails that decay with distance from the origgnl/r'*1.

(Thus an s-MTO decays ag#, and p- and d-MTOs decay ag/f and 1/r2 respectively.)
These are not suitable for real-space calculations. However, these tails are formally analogous
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to a Coulomb field produced by a superposition of electric multipoles placed at atomic sites,
and thus they may bscreenedmade short ranged) by appropriate unitary transformations
of the initial basis [83] to form a tight-binding representation. We shall denoted the screened
LMTO by x©.

By screening the linearized MTOs, one can producentust localizedbasis sety?,
most advantageous for real-space calculations. These orbitals are non-orthogonal, but can
be transformed intoearly orthogonalthough somewhat longer-ranged) orbitals. A cor-
responding nearly orthogonal tight-binding Hamiltonidfi can then be generated and used
in much the same way as an orthogonal empirical tight-binding Hamiltonian. A summary of
the underlying theory is given in the appendix. Here the central results are presented.

A brute-force method to transform the most localized orbigdlsnto orthogonal ones is
to apply the lowdin transformation

1 .1
Jor ' Joe

whereH® = (x*|—V?2+v|x?) is the standard LMTO Hamiltonian,is the electron potential,

and 0% = (x“|x“) is the matrix of overlap integrals between the screened LM¥QsWe

would like to avoid doing this transformation by careful choice of our LMTO representation.

Consider the representation where= y,,, i.e. where we ussite-dependergcreening.
In this representation the parameft(e,) = 0, as follows from equations (A.47), (A.52),
and (A.53). Thus we have

0" =1+h" ph? + (k7 |k7) ~ 1

HY ~ e, +h” +hVe,ph? +'(ik” |-V +v|") ~ g, +h.
Therefore, we can easily construchaarly orthogonal representation which is sufficiently
accurate for applications using the recursion method. To get the expressiaf foe
have to use the fact that the first term in the overlap (A.53) is the major one, so that

(0)~Y2 ~ (1+0*h*)~* and we can introduce (see equation (10)) the nearly orthogonalized
LMTOs

H = ((0*) 2% —V2 +v|x*(0*)"?) (10)

(11)

X)) =1x) L +oh) ™

and using this to calculate the Hamiltonian matrix, we get
H” = (x7|-V2+u|x") = L +h% ) THY (1 +0%h%) L,

Substituting here the expression f#f from equation (A.52), we get equation (11) with
W =Q+h%7h = k%A +6%h) ™ = h* — h% %R + - - - (12)

so we can use the most-localizet| for constructing the nearly orthogon&!”. We should
keep in mind that, in principle, the-representation is longer ranged than thest-localized
a-representation.

The actual computational procedure starts from the transformafioa S; then one
calculates the potential parameters for a trial potential (or density) and evalYafesm
equation (12). One then proceeds to calcukiteand spectral functions (the electron density
of states, etc) needed to reach a self-consistent solution to the electronic problem. This
is especially useful in combination with the recursion method [84, 85] for large disordered
solids [86], where thé-space method breaks down.

We now briefly consider a few examples of the applications of this method. It has proven
very useful in studies of amorphous magnetism, such as thatin Bemetallic glasses [87]
and Al-Mn [88, 89]. In the latter case it was possible to make a prediction of an unusual
transition when the paramagnetic crystallingMh becomes magnetic on beingelted The
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real-space recursion TB-LMTO method was extended to treat arbiteargollinearagnetic
structures (i.e. with arbitrary directions of the exchange potegmal?r wheres are the Pauli
matrices) which made it possible to establish the existence of a random magnetic order in Al—
Mn liquids in [89], and investigate complex magnetism and magnetization direction switching
in ultrathin Co/Cu films [90,91]. In the latter case the convergence was achieved to better than
0.0004 electrons a\ for electron densities and about 0.008r spin directions. The number

of iterations necessary for such a self-consistency was very large, about 1000. Additional
examples are mentioned in e.g. [106, 108].

4.3.2. Effective-medium-theory-based tight bindintn this model the total energy is given
by [92]

Uenrs = Y _ ec(s;) + |:Eas - Zeas(sl)] + |:Elel - Zelel(sl):| - (13
7 7 7

A central quantity in this expressionadg, which is the neutral-atom radius. This is the radius

of the smallest sphere centred on ditehich is charge neutral. The functiep(s;) gives the

energy per atom in a reference system (the diamond structure for the case of silicon) with the
same neutral-atom radius. This is the large term in the expression. The following two pairs of
terms are corrections to this term which take into account the details of the environment. The
pair of terms (the atomic sphere tem[sﬁ)as - e,m(s,)] is the difference in a combined
electrostatic and exchange and correlation term between the real syst@ier(d the reference
system. The term for the real system is expressed as a density-dependent pair potential. The
final pair of terms is the difference in the one-electron energies between the real system and the
reference system. A two-centre TB-LMTO Hamiltonian is used to evaluate the one-electron
energies for the real system. This method has been applied to a number of problems involving
silicon [93-95].

5. Introducing self-consistency

One of the main limitations of the formalisms described above is the absence of charge self-
consistency. This is important for many systems, and so a number of attempts have been made
to include self-consistency into the tight-binding models. The schemes range from simple
monopolar corrections to full self-consistency with no shape approximations for the charge
density.

Elstneret al[96] introduced self-consistency into the formalism of Frauenheim. We begin
with this approach because it can be applied to any tight-binding formalism (empirical as well
asab initio). Self-consistency is introduced by means of the addition of the following term to
the tight-binding expression for the total energy:

1
=5 ZQICIJ)/[,J (14)
1,J

wherey; ; = [dF dF’ F;(JF — 13,|)FJ(|?/ — 131|)/|7 — #'|. The functionF;(r) is a spherical
charge density, normalized to 1, and is taken to have an exponential form. Gaussians could
also be used, as they make the a!gebra simpler [97]. The chgrgee given by Mulliken
population analysisgt = Y, 5. Csa £:C55Op.1a — Z1). Minimizing the total energy with

respect to the expansion coefficieﬁlg gives the self-consistent Hamiltonian

1
Rigyp = h??,,,s + E(wl +wy)Ojq,ip (15)
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where hfx)_,ﬂ is the non-self-consistent Hamiltonian, and where the energy shift=
>, 4qsv1.5- The force on an atom is given by

- - ' h(wr+wy) 0054y 1 o1y
Fx=FQ = Y CifiCy) D L1 (16)
) “ Ia,JB.i fortm e 2 ORgk 24= a4 Rk

whereﬁ,((o) is the force evaluated using the expression for non-self-consistent tight binding.

Formally this expression ignores any contribution from exchange and correlation.
However, the main contribution to self-consistency is from the on-site term, and the decay
rates of the functiong’; are adjusted to give an on-site valyg () that agrees with either
experiment or first-principles calculations, and thus includes correlation.

There have been two attempts to include self-consistency into the formalism of Sankey
and Niklewski within the spherical charge approximation [55,61]. Here we will only consider
the later method [61]. Consider silicon. It has s and p valence electrons. Self-consistency is
achieved by varying the number of s and p electrons contributing to the charge density on each
site. This allows both for promotion of electrons from s to p, and for the net accumulation of
charge. The number of s and p electrons is determined from the output wavefunctions using
the projection onto the &wdin orbitals [98]. All the integrations are carried out exactly as
before, with one exception. When there is a net charge on a site there will be a long-ranged
electrostatic field. Integrals involving this field are treated within a dipole approximation.

The formalism of Horsfield also includes approximate self-consistency. It assumes
spherical input charges, but allows them to varyia) = n'” (¥) + ¢;A;(7), wheren'?
is the charge density from the neutral atom. The perturbing charge densit/spherical,
normalized to one, and constructed from partially occupied orbitals. The Hamiltonian
matrix elements are assumed to vary linearly wjthand the double-counting term to vary
quadratically. For the electrostatic terms this is the correct behaviour, but for the exchange and
correlation terms this is approximate. The long-ranged electrostatic fields are handled using
a low-order Gaussian expansion for the orbitals which allows analytic expressions to be used.
The values ofj; are found by maximizing the total energy. This follows from the fact that the
Harris—Foulkes functional is maximized by the correct input charge density [99] (unlike the
Kohn—Sham functional which is minimized).

The formalism of Lin and Harris [99] is self-consistent from the beginning. The main
difference as compared with the tight-binding formalisms described above is that analytic
functions are used for the orbitals and input charge density, allowing all the integrals except
those involving exchange and correlation to be expressed in closed form. A quadratic approx-
imation is made for the exchange and correlation energy. The charge on each site is found by
maximizing the total energy.

All the above self-consistent schemes make the approximation that the input charge
density is a sum of atom-centred spherical charge densities. Ordejain100] relaxed
this approximation and represent the difference between the sum of atomic densities and the
self-consistent density on a uniform mesh. They thus turned the formalism of Sankey and
Niklewski into a fully self-consistent LCAO method.

6. Comparison of methods

In order to give some idea of the relative efficiencies and accuracies of the methods described
above, calculations of the formation energy of the relaxed isolated vacancy in silicon were
performed. All the calculations use a 64-atom cell with one atom removed. Only the
point is used for sampling the Brillouin zone. The basis set is always minimal (s and p).
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The calculations were performed using the program Plaok@ge forihear combination of
atomic-ype abitals). a

The times we consider are for the evaluation of one total energy and set of atomic forces,
and we will measure them relative to the time for non-self-consistent orthogonal empirical tight
binding. The methods considered are: empirical orthogonal tight binding using the parameters
of Bowler et al [101]; the non-orthogonal tight binding of Frauenheim; #iginitio tight
binding of Horsfield; and full linear combination of atomic orbitals (LCAQO) with many of
the integrals evaluated during the calculation. With the exception of the full LCAO method,
self-consistency is imposed using the monopole method of Eletra[96]. From table 1 we
can draw several general conclusions.

Table 1. Results of calculations of the formation energy of the relaxed vacancy of silicon. The times
are measured relative to orthogonal tight binding. Note the following abbreviations: Tight

binding, SC= self-consistent, A= ab initio, LCAO = linear combination of atomic orbitals,

DNP = double numeric with polarization. The times in curly brackets foatiitio tight binding
correspond to the use of the Chebyshev expansion for the three-centre integrals, whereas the other
numbers correspond to the use of linear interpolation.

Method Formation energy (eV) Time
Orthogonal TB 3.2 1

SC orthogonal TB 3.2 13
Non-orthogonal TB 3.1 2

SC non-orthogonal TB 3.4 19

Al TB 43 72{180}
SCAITB 4.4 87{210
Al LCAO 3.8 44

SC Al LCAO 4.1 110
DNP Al LCAO 3.9 880
DNP SC Al LCAO 3.2 2100

First, we consider the cost of simulations in terms of computer time: introducing three-
centre terms makes the simulations much slower; compared with the non-self-consistent
calculations, self-consistency is cheapdorinitio tight binding, but expensive for everything
else; full LCAO can be cheaper thab initio tight binding (this is because the three-centre
integrals do not have to be evaluated one at a time in the full LCAO calculations).

Second, we consider the accuracies. For the four results that use the same basis set
(ab initio tight binding and the full LCAO method), we see that no one of the approximations
is obviously better than the others. The four results based on two-centre tight binding show
remarkable agreement with each other, but are all about 1 eV smaller than the corresponding
ab initio results. In table 1 are also given results obtained with a well converged basis set
(two sets of s and p orbitals, and one set of d orbitals) using the full LCAO method. The self-
consistent result (3.2 eV) is in remarkably good agreement with the two-centre tight-binding
results. This follows from the fact that the two-centre models are fitted to well converged
self-consistent results.

The accuracies cited above have been relative to other atomic-type orbital methods. The
result from well converged plane-wave calculations is about 3.6 eV [102], which is rather
larger than the most accurate result obtained from the self-consistent LCAO calculation with
the large basis set. The origin of the discrepancy isktpeint sampling. Using only th&
point is insufficient. If the non-self-consistent orthogonal tight-binding simulation is repeated
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with a 3 x 3 x 3 mesh ofk-points, the vacancy formation energy is found to increase from
3.2eVto3.8eV.

For the case of the vacancy it is clear that the two-centre tight-binding models are faster
and more accurate than thé initio minimal-basis-set methods. This is because the fitting
procedures used to generate the models were appropriate for this problem. However, the
two-centre models are not as transferable asathéitio models. This can be clearly seen
from the phase diagram of silicon. The non-orthogonal two-centre model of Frauenheim gives
a description of the close-packed phases of silicon that is rather less good than that of the
more open structures [75], whereas #ieinitio model of Sankey and Niklewski [29] gives a
rather better description. It should also be remembered that the motivation for developing the
ab initio methods was to provide a scheme that can be improved systematically and which can
be applied easily to multicomponent systems. To see both factors coming into play in the case
of hydrocarbons and fluorocarbons, see Horsfield [30].

Appendix. Derivation of the tight-binding LMTO method

In the muffin-tin approximation we have spherically symmetric potentigls ) within atomic
spheres (AS) of radiug centred on sites, and a constant potenti@ly = 0) in the interstitial
region. Thus the total potential )) is given by

v(7) =ZU1(V1) (A.1)
1

wherer; = |F — E,|, and is the distance from the centre of the sitRat Orbitals with
eigenvalues (¢; (e, r)) and energy derivativag, (e, r) = dy; (g, r)/de are found from

[VZ+e — v (r)]gi(e,r) =0 (A.2)

with the energy measured in Ryd, and the distances in Bohr radii.
An orbital with arbitrary energy can be approximated inside the muffin-tin sphere by

Qi(e,r) = @i(en, r) + (e — £,)0(e,, 1) + O (e — £)7]. (A.3)
These are linearized muffin-tin orbitals. This approximation is accurate for energies spanning
about 1 Ryd around,.
We shall denote by (e, r)) the solutions terminated (that is, set to zero) outside their
respective atomic spheres. The orbitals are normalized to unity within the AS:

N
(plp) = f dr r2p%(e,r) =1
0

(pl) =0
where the second orthogonality condition follows directly from normalization.

Inthe interstitial region (where = vg) the Schédinger equation reduces to the Helmholtz

wave equation
(VZ2+k%)9(e,7) =0 (A.5)
wherex? = ¢ — vy.

A complete orbital is constructed from a part inside the AS (the head) and a part that lies
outside (the tail). For the tail region one selects a solution of (A.5) in terms of the Bessel
functions H, (x?) at given energies,, which are generally different from the values used for
the head. The simplest, but very effective, choie€is- 0. In this case equation (A.5) reduces
to the Laplace equation, with the LMTO tail in the interstitial region being proportional to

(A.4)

+1
KD, (1) = (%) Yim (Fr) (A.6)
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wherew is a scaling length, such as the average Wigner—Seitz radius. The envelope function
K has the form of an electrostatic potential produced bym at/ . Itis regular everywhere
except atR;, and can be expanded about any $ite 1 [103]:

KiL G ==Y 1IPu G S (A7)
T
in terms of the regular solutions of the Laplace equation
- (ri/w) -
VA 2@+ L (A.8)

The ket-vector notation is used to denote the orbital terminated beyond the atomic sphere it
is centred on. We shall make use of the convention that the orbitals, which depend explicitly
on the directior¥;, contain the spherical functior, (¥;). Otherwise, only the radial part
depending on the absolute valuerpis used. The expansion coefficiestsare the so-called
canonical structure constants which are independent of energy, lattice constant, and sphere
radii. They have a very simple form in terms of the Slater—Koster notation [32]:

S% = —2w/d 8%, = 2v/3(w/d)?

Spp(0. ™) = 6(w/d)*(2, —1)

8o, = —2v/5(w/d)® (A.9)
S%4(0, 7) = 6v/5(w/d)*(—/3, 1)

SS4(o, 7, 8) = 10(w/d)°>(—6, 4, —1).

The constants for arbitrar; — R, required in the expansion (A.7) can be trivially found
from Slater—Koster tables [32]. The same expansion (A.7) holds true if one uses the envelope
solutionsk ° for «2 # 0, with a more complicated functional form for téc2) matrices [103].

The construction of the LMTOs proceeds as follows. Consider one atomic sphere centred
at site/. The solution of Sclirdinger’s equation inside the sphere is approximated by a linear
combination ofp, andg, by matching the function and its first radial derivative to the envelope
function K at the atomic sphere surface:

KO(r) = (w/rp"™ — AKX (e)pi(e, r1) + B ()i (e, 1) (A.10)

whereAX and BX are the expansion coefficients found from the matching conditions. Note
that since{p(e)|@(e)) = 0 for any e we can perform this matching procedure &bitrary
energy and then generate a set of enatggendenbasis functions. As we will see shortly,
this reduces the Scbdinger equation to a non-linear eigenvalue problem, which is difficult to
solve. Instead, we shall use our freedom in constructing these orbitals to go over directly to
an energyindependenbasis set, which can be used effectively in a variational solution of the
Schiddinger equation, since it results in the linear eigenvalue problem.

The tail of the envelope function (A.7) is also matched in the same way inside neighbouring
spheres to the orbitals and their first energy derivatives:

J2rp) = (ri/w)!' /220 + 1) — T2 (e, 1) = AL (&) (e, rp) + B ()i (e, rr) (A.11)

where the expansion coefficiemy, and B}, are found from this matching condition, 4$,

andB} have been before them. By using these substitutions we arrive at some atom-centred,
energy-dependent orbitals which are called the MQand we write them in the following

form for any point in the crystal:

X6 F) = lor(e. FD)Af (&) + 1@ (e, F) B (&) = Y 1P GrdSh, +1K) (A12)

rr
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where all| }s are non-zeronly in their respective atomic spher¢s! is non-zero only in the
interstitial region, andv, is the normalization coefficient. Itis more convenient to write MTOs
in a slightly different, though equivalent, fashion. Namely, insteag ahd¢y one can use
andJ° to arrive at a more frequently used representation of the energy-dependent MTOs:
X1 (e 7) = lor(e. FDINJ (&) + 1T (e F)) PR(e) = Y 1T (6. Fi))SD oy + 1K) (A13)
rr

whereP) (¢) = BK(e)/B},(e), N%(e) = AK(e) — P (e)AK (¢). Omitting the site and orbital
indices and summation over repeating indices, one can rewrite MTOs in the compact form

xM () = lp@)N(e) +17%eN[P°e) — $%+ |K)' (A.14)
whereN (g) and P°(¢) are the so-calleotential parametershich are diagonal with respect
to combined site and orbital indei.. Sincey;;(e,7) = x;.(e, 7 — R;), we can use the
standard construction for the Bloch wave in a perfect crystal. Since the normalization factor
is a constant we can work with

x(e) = X1 (&)/Ni(ey). (A.15)
We can write a general electron wavefunction as
Vile) =Y Cllx(e). (A.16)
1L
One s free to select the coefficienﬁ#Z such that the second term in equation (A.14) vanishes:
> i @LPR )81 — Sy, ] = 0. (A.17)
L

Then the remaining part, which is a linear combination|@fs)) and |K)’, satisfies the
Schiddinger equation for the muffin-tin potentitactly Thus, we have recovered the famous
KKR tail-cancellation condition. This equation, which defines the electron energy bands,
is very inconvenient indeed, since it is a non-linear equation for the eigenwaluestead
of solving this equation, we would like to construct from MTOs the most compact energy-
independenbasis to use for theariational solution of the Schirdinger equation. Moreover,
we can use our flexibility in choosing energy-independent linear M} @QsMTOSs) to make
them accurate to first order i@ — ¢,) inclusive, so that the errors will be proportional to
(e —e,)? insidethe atomic spheres. As we mentioned earlier, our approximations mean that in
theinterstitial region the error of the LMTO is proportional te — ¢,)*, but this contribution
is neglected in the atomic sphere approximation, where one ssfgte-fillingoverlapping
MT spheres. We need to analyse MTOs in detail to see all this.

The matching conditions at the atomic sphere boundaries give us a two-by-two linear
system of equations, and it is convenient to write their solutions in the following form:

0, . Wle(e). K] (g)21+1D(8)+l+1

PO = o =22 (Y ) (A.18)
o, WIK®.JO w/2 rw g Y2

N = Wle(e), JO1 — Wle(e), JO] [2 P (8)] (A.19)

where D(e) = s¢'(e,5)/¢(e, s) is the logarithmic derivative of the wave function at the
atomic sphere surface, which is simply related to the usual scattering phase [€ltift], and
W11, fol = s?[f1(s) f2(s) — f1(s) £5(s)] is the Wronskian. In both cases the prime stands
for differentiation with respect to the radial variable. To derive (A.19)Novia P one should
differentiate the Wronskian relation (A.18) and use

Wp. o] = 20 — §'0)ros = f dr 2% = 1. (A.20)
0
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The latter relation follows from the Sabdinger equation (A.2) and its first derivative with
respect to energy

(=VZ+v — )¢ = .

It is important to note that when the tail-cancellation condition (A.17) is obeyed, the
contributions of/°(e) cancel outin the atomic sphere at the origin exactly, at least for low
orbital angular momenta However, if one were to use the MTQg¢) with a variational
method, these unwanted contributions, generally varying linearly with the eaergguld
remain and reduce the precision of the band calculations. The energy dependéfes if
obviously weak, since it matches continuously to energy-independent envelope fukifion
and can be eliminated completely to first order when using fixed energy orbitals. At any given
energys = ¢, in aregion of interest we select the head

N(E) |+, . PG
N O N

"= | (e))

(the part of the MTO in its own atomic sphere) and chod$és,) from the condition
x"a¢,) = 0 which gives us a condition faf’(e, ):

Y 510)
N(e)) +|f°(eu))P (&v) _
N(e)) N(e,)

This relation has a puré-character since the matrices of potential parameters are diagonal
matrices with respect to site and orbital indices. Thus, we arrive at the following substitution:

19(e,) + lp(e,)) 0. (A.21)

- _9(e) +9(e)N°(e)) /Ny _ g ( 2 -o>‘1/2

J (e, 1) = Po(eu)/No(sv) =—¢(r) ” P (A.22)
where we have used (A.19) and introdudkled definitions

@°r) = ¢(r) + 9(r)o° (A.23)

%= N°/N® = P%/(2P°) (A.24)

where we imply that all quantities without arguments are evaluateetat, . After we perform
the substitution (A.22) in the heaahd the tailsof the MTO we obtain the energpdependent
basisy (¢,), which is accurate to terms@®— ¢,)2.

Substituting (A.22) inthe equation (A.15), and using (A.19) we finally arrive at the working
expression for the standard linear muffin-tin orbital (we mark this representatiaarbgs
the superscript):

x% = lp) + 1% (P° — 8% /N° + K% /N®

= o) — |9°)(P%)2(P° — §%(P%) M2+ |KO)/N°

/2. -1/2
= lg) +1¢°)n° + | KO’ (—PO) : (A.25)
w
Here we have introduced the two-cenfirst-order Hamiltonian
no — _(}')O)—l/Z(PO . So)(PO)‘l/z

and have used (A.19). One can now use the constructed LMTOs to solve tliiager

equation by minimizingv;|H — E®@|y;) with v; taken from equation (A.16). This leads to
the standard linear problem

Z Cyy(Hppi —EYOpp) =0

rr
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where the matrix elements are
H = (x°|-V*+v[x°)
=h%+h% % + (1 +h%%)e, (cn° + 1) + hosvpho + (k| =V? + v|k)!
(A.26)
0 = (x°1x% = @ +h% O (°h° + 1) + hOph® + 7 (i |ic)! (A.27)
where we have introduced an extra potential parameter

pu = (@) = —¢i(s1)/3pi(s1)

, (2. \TY?
k) = KO <—PO) :
w

The last terms in (A.26) and (A.27) are the so-called combined corrections. Recallifgthat
is a solution of the Sckdinger equation at = 2 we see that(x |- V2 +v|«)! = «k2( (k|k)").
With the use of Green’s theorem and the definitiofrdfwe can express these integrals in terms
of the canonical structure constasfsand their first energy derivatives= 95 /d«x2[105,106].
Therefore, all one needs to know in order to solve the &bhger equation for a crystal is
the values of the partial wavefunctions and their derivatives with respect to the coordinate and
energy at the atomic sphere surface at the ensrgythe window of interest. These values are
easily found from radial solutions of the Séldinger equation for the muffin-tin potentials.

Let us now discuss in more detail the first-order Hamiltortién

and

B0 = — g% (PO~ Y2(PO — §9) (PO Y2 = (O — ¢, +/d05/d0 (A.28)
where
. 2 1/2 s 1/2 s 1+1/2 I—D
0 — 0-1/2 _ [ £ o0 (2 o
Vd® = (P°) (w) Wip. J° (2) (w) v 51

(D+1+1)( - D)
20+1

whereD = D[¢,(r)] = dIng,(r)/dInr atr = s. Potential parameterd = c?ls,fo,L and
d® = d%8, 1.1, are the diagonal matrices easily found from the preceding equations.

It is instructive to relate the potential paramet€tandd® to the scattering characteristics
of the muffin-tin potential for which they are calculated. Firstwe recallthe relation between the
potential function and the scattering phase shift, naraBR—* o« — tané;. Since tar$; has a
resonant character [104], it is customary to paramet#£&d)] ~* in the following functional
form:

: 2
®—e,=—PYP° = —ZW[e, KNW][e, J°] = s¢?(s)
w

[PO(e)] ™ = - 2 4y (A.29)

-C
where thecanonical potential parameters; (centre),A; (width), andy, of the band are
readily found fromg'(e, s), ¢(¢, s), and their derivatives with respect to energy; is the
energy at whichD(C;) = —I — 1. Substituting this expression into equation (A.28) we arrive
at the following relations for the parameters of the first-order Hamiltohfan

\/d_zx/K(lﬂ/g”gc)

0 g, —C
—g,=(C—g)|1+ )
c—e,=( 8)( Y X )

(A.30)
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If one selects, = C, thend® = A, ¢ = C, and the first-order Hamiltonian becomes

h° = VAS'VA H~HY =¢, +/ASVA.
Thus we have arrived at the simplest two-centre first-order Hamiltonian in real space, useful
in qualitative discussions of the band problem. For an ideal crystal one traisfansl O
into k-space by substituting for the only site-non-diagonal maftrwith its Fourier transform,
calculated by the standard Ewald procedure. Since the canonical potential parameters
andy, are somewhat less sensitive to a choice,gfone can substitute equation (A.3) into
equation (A.18) and compare with the resonant expressioRfpequation (A.29), with the
following results suitable for practical calculations:

_Wle. K% _ @) Dlps)]+1+1
Wip. K%~ ¢(s) Dlp(s)]+1+1

/ 1+1/2

IWie, KOl /2 V/slo(s)I |Dlp(s)] +1+1]
! Wip, J°] 1 s\ Dlp(s)] -1
"EPRO] T WIp. K T 2@+ 1) (w) Dl +1+1
In order to see that the width has the correct dimensionality of Ryd we recall that we are
working in atomic units, wherehas the dimensionalit§Ryd) /2 andy has a dimensionality
of s7%/2 = (Ryd)¥*. This completes our discussion of tsiandardLMTO method.
In order to treat large systems (meaning a few hundred atoms or more) one would like to
have a localized, accurate, and minimal basis set which one can ugdljnab initio method.
The standard LMTO method operates with long-range orbitals and is not suitable for this
purpose. However, the LMTOs can be made localized with the use of the information about
the environment of each atom [83]. To screen the long-ranged t&iPof;) one introduces,
instead of/°, a functionJ in the expansion (A.7) which includes the screening multipoles
with chargesy;; (=0 for! > [,, where usually, < 2):

JR(ry) = I —an K9 (ry). (A.32)

Introducing such screening charges will inevitably change the multipole field everywhere,
including the vicinity of the origin, wher& ©® was centred. Thus, one has to introduce new
envelope function& * which are defined in all space and finearly related tok © everywhere.

The tail expansion now reads

Ky (Fry= =Y Jp FidSiL (A.33)
-

C—¢g, =

where nowsS® hasnon-zeroon-site elements, sinck* # K9 at the origin. Let us use
compressed matrix indices= I L which imply a summation over repeated indices, and mark
by the superscripto the envelope functions defined in the whole space, while the functions
without this sign are assumed to be truncated beyond their atomic sphere of origin. Then we
have

OOK;I = KaO’S“’fl - J;Sg’a = KL?/(S(‘/“ +a“/Sg’a) - ngs:;’a (A 34)

©KO = K984 — JOSD,.
From our earlier discussion we expect these envelope functions to be related by a unitary
transformationl/,, such that*K% = *K S,U,w. Comparing this with equation (A.34) we
obtain a relation betweest andS® by comparing the coefficients befok€? andJ° in two of

these expansions:
Usa = 8 + 20 SO, = 1 +aS°

A.35
Se . =80, Upa = S°(L+aS") = $°+ 5% s°. (A.35)
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Thus we have obtained a Dyson-like equation for the screened structure constants. A solution
of the Dyson equation (A.35) can be given in the following convenient form:

§=80+85%S%+. .. =a (L +aS+aSCasO+. .. — 1)
=q ! [(1 N 1] =a Nat=-8) gt -t (A.36)

Since in a regular lattice with lattice vectoRsand 7 and atomic positior within the unit
cell,

1 La-1 -
[ i 8RrL R+TT'L — S?grL R+TT L’] = (1/N) Z I:algg-l — S?L,f’L’(k):I e_lk'T (A37)
k
where by definition

0 z /'é-f
St () = Z Sker ivior© (A38)

the long-range behaviour 6f is defined by the analytical properties of the Fourier-transformed
function S°(k), which is customarily evaluated by means of a Ewald summation. It follows
from the form of the canonical structure constants (A.9) 8§f4k) is bounded froLn above;
therefore itis possible to find sufficiently small and positiggfor which detf—* — 5°(k)] # 0.
Since there are no poles for real values af equation (A.37), its Fourier transform will be
falling off exponentially with dlstancER R |/w. This conclusion does not, of course, depend
on whether the lattice is ordered or not. As mentioned above, it should just be sufficiently
close packed or, for open structures, packed with empty spheres so that this recipe for screening
might work.

We now give a simple example illustrating this procedure for screening LMTOs. Consider
a system with only one s orbital per site [106]. The relevant structure constaiy, js
equation (A.9), whose lattice Fourier transform is

- 2w .7 d3T 2w 6
=) —e Tl _ Y e kT 4 constant= ———— + constant A.39
S® XT: T QT (kw)? (439

where the constant is determined from the condition that the on-site elementSehta&ix in
real space vanisheS;_, = 0= (1/N) ) ; S(k), 2 = (4 /3)w? is the unit-cell volume, and
the Brillouin zone was approximated by a sphere with rakljssich that4rz /3)k3 = (27)3/ Q.
After performing the integration we obtain

- 6 1
Sky=——+— A.40
(k) Gw? (A.40)
whereq, = 2-5/33-2/372/3 — 0.32. Substituting this into (A.36) we obtain f@& # 0
1/1 1 6 \ 'l i
@ = (1/N -+ ——) etk A.41
o = A/ )Z o (oe o, (kw)2> o ( )

Note that this expression has no poles only ¥ «. = 0.32, i.e. the screening charges cannot
exceed a certain limit. In this case, if we were to extend the integrationkaeeinfinity, we
would get

o? 2w
§¢. = __ "¢ T7 o VEER/wW) A.42
= e R (A.42)
where we have introducef = aw. /(e — ). Indeed, this matrix decays exponentially in
real space. This seemingly obvious statement [83] does not actually apply to real lattices.
Obviously, the decay will be strictly exponential only whalh multipole moments of the



R20 A P Horsfield ad A M Bratkovsky

given charge distribution arexactly zero Note that an actual integration is cut off at the
Brillouin-zone boundary, and the actual functional dependence on the distdnces given
in terms of a damped oscillatory asymptotic expansion. The complicated shape of the actual
Brillouin zone, however, produces strong compensation of different oscillatory terms, so the
actual behaviour is close to fast exponential decay. The optimal numerical choice for close-
packed structures i8s = 0.3485,p, = 0.05303, andxg = 0.0107, and the orbitals are
essentially limited to first and second neighbours [83].

A screened LMTOy“ can be constructed exactlythe same way as the standard LMTO
(A.25), with the replacements of all superscriptss0«, and by substituting for the potential
parametefy with y — « in (A.29), (A.30). Indeed, the matching conditions now read

. (r1/w)! w\"
]”(T)E m-(}{](;) —> J”(VI) (A43)
I+1
Ko(r) = (%) — @ule, )N (e) + () P (e). (A.44)

We immediately have from these matching conditions
Wip(e), K% P%e)

P%(e) = = A.45
) = Wiee), 79 ~ T=aPe) (A.45)
WIKC, J*] w - 1/2
N¥(e) = ————= = | = P“ A.46
©) = ot ] |57 (A.46)
whereP? is from (A.18). Rewriting (A.45) in the form
[Pe)] " =[Pe)] " —«
and substituting the resonant expansion (A.29), we arrive at
o -1 _ A _
[Pr@] = —c+r-w (A.47)

In the expression for the Hamiltonian in the screened LMTO representation below (A.54)
we shall see that all potential parameters are define@ty) and its energy derivatives.
Comparing (A.47) with (A.29) we see that indeed the only difference is the replacement
y — y — a. Repeating our reasoning for the choice B, we arrive at the following
substitution, which makes the screened LMTO independent of energy everywhere:

. - N -1/2
D) + p(e)N(e,)/N(e1) _ W,)G pa) (A.48)

f“(ev, r) —> —

Pa(g,)/N%(g,)
where
¢ (r) = ¢(en) + p(e)0” (A.49)
o= E) oy (A.50)
=Ny '

and obtain a screened LMTO (again, we want it to start from just the atomic dbjifao we
divide the initial MTO (A.44) byN“(¢,)):

X® = o) + 1) (P — S)/N + |K*)' /N
= |p) — [g*)(P*)"Y2(PY — §*)(P*) Y2+ |K*) /N*

. o\ L2
=|¢>+|¢“>ha+|K“)’<;Po‘> : (A.51)
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Here we have introduced the two-cenrfirst-order screened Hamiltonian
ha — _(PO()—]./2(P0! _ Sa)(Pa)—l/Z.

One can now use the screened LMTOSs to solve thedsiihger equation, which leads to the
standard linear problem

Z C;X’(I?(H;X’L’IL - E(i)O}x’L’IL) =0
I'r
where the matrix elements are
H* = (x*|-V?+v|x®)
=h¥A+0%h%) + (L +h% e, (c%h® + 1) + h%, ph® + ' (k*|—V? + v|*)’
(A.52)
0% = (x*Ix*) = A +h*0*)("h* + 1) + h* ph® +" (k*|c*)' (A.53)

where
A /2 .\
|Ka>lE|Ka>l<—Pa) :
w

One can gain more insight into the screened LMTOs by looking at the parametrization of
the Hamiltonian
h = —(P*)~Y2(P* — §*)(P*) V2 = ¢ — g, +Vd*S*Vd” (A.54)
where

o — (pay—1/2 _ E vz °2 B EU_C
Var = (P V2 = - Wip, J* ] = VA |[1+(y —a) X

. 2 g, —C
* —¢e,=—PYP*=——W[p, K*lW[e, J*] = (C —¢)) [1+(y — ) A :|
w

where we again expressed everything in terms of our primary potential parafietersand
y (equation (A.31)). Note that it differs from (A.30) merely by substitutionr> y — «, as
we discussed earlier; see equation (A.47).

This finalizes our construction of the tight-binding LMTO. We see that the first-order
Hamiltonian (A.54) is short ranged because it contains the scre¥hathtrices. The range
of H* (equation (A.52)) is larger, since it contains two-hop terms,Aiké. These terms may
be treated exactly or perturbatively.

Finally we offer some comments on the accuracy of the LMTO method and recent
improvements. We have used the atomic spheres approximation (ASA) by taking the energy
of our basis wave functions to k€ = 0. Thus we make an error that is lineain- E, in our
basis in the interstitial region, whereas inside the MT spheres the corrections are proportional to
(e — &,)%. The LMTO-ASA is a powerful tool for close-packed solids, but these inaccuracies
make it unsuitable for calculation of forces and dynamics. Full potential LMTO has been
designed to allow the inclusion of any non-ASA corrections and the accurate treatment of any
interstitial region (see [107] and references therein). It is somewhat involved, making use of
multiple+2 basis sets to describe accurately the interstitial region.

It is worth mentioning that it is in principle possible to reformulate the standard LMTO
method so that (i) the error of the basis in the interstitial region issnets, but (¢ — ¢,)2,

(i) the basis set is localized in space, and (iii) the full (non-spherical) charge density and
potential are expanded via the same functions as were used to construct the basis [108]. The
main idea of using solutions of the Séldinger equation in the MT spheres as well as the
interstitial region (A.5) with matching at the MT spheres does not change. However, in order
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to localize the basis one has to solve the wave equation (A.5) such that the solution has zero
Y1, (r;)-projections on other non-touching spheres with ragii (these spheres are analogous

to hard impenetrable spheres). Such solutions always exist, they produce a complete set, and
they may be localized. One needs these functions to obey the matching conditions of the
wave functions at the MT spheres, which is done by introducing so-ddhésipartial waves.

The matching conditions at the MT spheres are then reduced to algebraic form involving the
kink (KKR) matrix K. The LMTO overlap matrix and the Hamiltonian matrix can then be
expressed solely in terms of the kink KKR matrix at the selected engy@nd its firstthree

energy derivative® , K, andK . This, as we have seen, extends the spatial range of the matrix
elements.
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